Create intelligent features and enable new experiences for your apps by leveraging powerful on-device machine learning.

All subtopics
Posts under Machine Learning topic

Post

Replies

Boosts

Views

Activity

tensorflow-metal fails with tensorflow > 2.18.1
Also submitted as feedback (ID: FB20612561). Tensorflow-metal fails on tensorflow versions above 2.18.1, but works fine on tensorflow 2.18.1 In a new python 3.12 virtual environment: pip install tensorflow pip install tensor flow-metal python -c "import tensorflow as tf" Prints error: Traceback (most recent call last): File "", line 1, in File "/Users//pt/venv/lib/python3.12/site-packages/tensorflow/init.py", line 438, in _ll.load_library(_plugin_dir) File "/Users//pt/venv/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib Reason: tried: '/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file)
6
4
2k
Nov ’25
Foundation Models not working in Simulator?
I'm attempting to run a basic Foundation Model prototype in Xcode 26, but I'm getting the error below, using the iPhone 16 simulator with iOS 26. Should these models be working yet? Do I need to be running macOS 26 for these to work? (I hope that's not it) Error: Passing along Model Catalog error: Error Domain=com.apple.UnifiedAssetFramework Code=5000 "There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.MobileAsset.UAF.FM.Overrides" UserInfo={NSLocalizedFailureReason=There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.MobileAsset.UAF.FM.Overrides} in response to ExecuteRequest Playground to reproduce: #Playground { let session = LanguageModelSession() do { let response = try await session.respond(to: "What's happening?") } catch { let error = error } }
14
3
2k
Jul ’25
Core ML Model performance far lower on iOS 17 vs iOS 16 (iOS 17 not using Neural Engine)
Hello, I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case. TL;DR The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16. Longer description The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic). iOS 16 - iPhone SE 3rd Gen (A15 Bioinc) iOS 16 uses the ANE and results in fast prediction, load and compilation times. iOS 17 - iPhone 13 Pro (A15 Bionic) iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower. Code To Reproduce The following is my code I'm using to export my PyTorch vision model (using coremltools). I've used the same code for the past few months with sensational results on iOS 16. # Convert to Core ML using the Unified Conversion API coreml_model = ct.convert( model=traced_model, inputs=[image_input], outputs=[ct.TensorType(name="output")], classifier_config=ct.ClassifierConfig(class_names), convert_to="neuralnetwork", # compute_precision=ct.precision.FLOAT16, compute_units=ct.ComputeUnit.ALL ) System environment: Xcode version: 15.0 coremltools version: 7.0.0 OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode) Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0 Additional context This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16 If anyone has a similar experience, I'd love to hear more. Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know. Thank you!
1
1
1.9k
Mar ’25
CreateML
I'm trying to use the Spatial model to perform Object Tracking on a .usdz file that I create. After loading the file, which I can view correctly in the console, I start the training. Initially, I notice that the disk usage on my PC increases. After several GB, the usage stops, but the training progress remains for hours at 0.00% with the message "About 8hr." How can I understand what the issue is? Has anyone else experienced the same problem? Thanks Diego
1
1
630
Jan ’25
What is the proper way to integrate a CoreML app into Xcode
Hi, I have been trying to integrate a CoreML model into Xcode. The model was made using tensorflow layers. I have included both the model info and a link to the app repository. I am mainly just really confused on why its not working. It seems to only be printing the result for case 1 (there are 4 cases labled, case 0, case 1, case 2, and case 3). If someone could help work me through this error that would be great! here is the link to the repository: https://github.com/ShivenKhurana1/Detect-to-Protect-App this file with the model code is called SecondView.swift and here is the model info: Input: conv2d_input-> image (color 224x224) Output: Identity -> MultiArray (Float32 1x4)
1
1
179
Apr ’25
Insufficient memory for Foundational Model Adapter Training
I have a MacBook Pro M3 Pro with 18GB of RAM and was following the instructions to fine tune the foundational model given here: https://developer.apple.com/apple-intelligence/foundation-models-adapter/ However, while following the code sample in the example Jupyter notebook, my Mac hangs on the second code cell. Specifically: from examples.generate import generate_content, GenerationConfiguration from examples.data import Message output = generate_content( [[ Message.from_system("A conversation between a user and a helpful assistant. Taking the role as a play writer assistant for a kids' play."), Message.from_user("Write a script about penguins.") ]], GenerationConfiguration(temperature=0.0, max_new_tokens=128) ) output[0].response After some debugging, I was getting the following error: RuntimeError: MPS backend out of memory (MPS allocated: 22.64 GB, other allocations: 5.78 MB, max allowed: 22.64 GB). Tried to allocate 52.00 MB on private pool. Use PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for memory allocations (may cause system failure). So is my machine not capable enough to adapter train Apple's Foundation Model? And if so, what's the recommended spec and could this be specified somewhere? Thanks!
8
1
271
Jul ’25
Selecting an output language with Foundation Models
When using Foundation Models, is it possible to ask the model to produce output in a specific language, apart from giving an instruction like "Provide answers in ." ? (I tried that and it kind of worked, but it seems fragile.) I haven't noticed an API to do so and have a use-case where the output should be in a user-selectable language that is not the current system language.
3
1
511
Jul ’25
FoundationModels tool calling not working (iOS 26, beta 6)
I have a fairly basic prompt I've created that parses a list of locations out of a string. I've then created a tool, which for these locations, finds their latitude/longitude on a map and populates that in the response. However, I cannot get the language model session to see/use my tool. I have code like this passing the tool to my prompt: class Parser { func populate(locations: String, latitude: Double, longitude: Double) async { let findLatLonTool = FindLatLonTool(latitude: latitude, longitude: longitude) let session = LanguageModelSession(tools: [findLatLonTool]) { """ A prompt that populates a model with a list of locations. """ """ Use the findLatLon tool to populate the latitude and longitude for the name of each location. """ } let stream = session.streamResponse(to: "Parse these locations: \(locations)", generating: ParsedLocations.self) let locationsModel = LocationsModels(); do { for try await partialParsedLocations in stream { locationsModel.parsedLocations = partialParsedLocations.content } } catch { print("Error parsing") } } } And then the tool that looks something like this: import Foundation import FoundationModels import MapKit struct FindLatLonTool: Tool { typealias Output = GeneratedContent let name = "findLatLon" let description = "Find the latitude / longitude of a location for a place name." let latitude: Double let longitude: Double @Generable struct Arguments { @Guide(description: "This is the location name to look up.") let locationName: String } func call(arguments: Arguments) async throws -> GeneratedContent { let request = MKLocalSearch.Request() request.naturalLanguageQuery = arguments.locationName request.region = MKCoordinateRegion( center: CLLocationCoordinate2D(latitude: latitude, longitude: longitude), latitudinalMeters: 1_000_000, longitudinalMeters: 1_000_000 ) let search = MKLocalSearch(request: request) let coordinate = try await search.start().mapItems.first?.location.coordinate if let coordinate = coordinate { return GeneratedContent( LatLonModel(latitude: coordinate.latitude, longitude: coordinate.longitude) ) } return GeneratedContent("Location was not found - no latitude / longitude is available.") } } But trying a bunch of different prompts has not triggered the tool - instead, what appear to be totally random locations are filled in my resulting model and at no point does a breakpoint hit my tool code. Has anybody successfully gotten a tool to be called?
2
1
420
Aug ’25
iOS 26 beta breaking my model
I just recently updated to iOS 26 beta (23A5336a) to test an app I am developing I running an MLModel loaded from a .mlmodelc file. On the current iOS version 18.6.2 the model is running as expected with no issues. However on iOS 26 I am now getting error when trying to perform an inference to the model where I pass a camera frame into it. Below is the error I am seeing when I attempt to run an inference. at the bottom it says "Failed with status=0x1d : statusType=0x9: Program Inference error status=-1 Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model " does this indicate I need to convert my model or something? I don't understand since it runs as normal on iOS 18. Any help getting this to run again would be greatly appreciated. Thank you, processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: Could not process request ret=0x1d lModel=_ANEModel: { modelURL=file:///var/containers/Bundle/Application/04F01BF5-D48B-44EC-A5F6-3C7389CF4856/RizzCanvas.app/faceParsing.mlmodelc/ : sourceURL=(null) : UUID=46228BFC-19B0-45BF-B18D-4A2942EEC144 : key={"isegment":0,"inputs":{"input":{"shape":[512,512,1,3,1]}},"outputs":{"var_633":{"shape":[512,512,1,19,1]},"94_argmax_out_value":{"shape":[512,512,1,1,1]},"argmax_out":{"shape":[512,512,1,1,1]},"var_637":{"shape":[512,512,1,19,1]}}} : identifierSource=1 : cacheURLIdentifier=01EF2D3DDB9BA8FD1FDE18C7CCDABA1D78C6BD02DC421D37D4E4A9D34B9F8181_93D03B87030C23427646D13E326EC55368695C3F61B2D32264CFC33E02FFD9FF : string_id=0x00000000 : program=_ANEProgramForEvaluation: { programHandle=259022032430 : intermediateBufferHandle=13949 : queueDepth=127 } : state=3 : [Espresso::ANERuntimeEngine::__forward_segment 0] evaluate[RealTime]WithModel returned 0; code=8 err=Error Domain=com.apple.appleneuralengine Code=8 "processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: ANEProgramProcessRequestDirect() Failed with status=0x1d : statusType=0x9: Program Inference error" UserInfo={NSLocalizedDescription=processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: ANEProgramProcessRequestDirect() Failed with status=0x1d : statusType=0x9: Program Inference error} [Espresso::handle_ex_plan] exception=Espresso exception: "Generic error": ANEF error: /private/var/containers/Bundle/Application/04F01BF5-D48B-44EC-A5F6-3C7389CF4856/RizzCanvas.app/faceParsing.mlmodelc/model.espresso.net, processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: ANEProgramProcessRequestDirect() Failed with status=0x1d : statusType=0x9: Program Inference error status=-1 Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1). Error Domain=com.apple.Vision Code=3 "The VNCoreMLTransform request failed" UserInfo={NSLocalizedDescription=The VNCoreMLTransform request failed, NSUnderlyingError=0x114d92940 {Error Domain=com.apple.CoreML Code=0 "Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1)." UserInfo={NSLocalizedDescription=Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1).}}}
1
0
1.1k
Sep ’25
Filtering Contours from Vision
Hello, I need help I desire to select/filter the contours on an image. Not sure best way to do that. Idea select/filter for bottom left most contour? see image attached please. also will need end points or court corners. and need contour to be fine line, smooth, ie accurate of the court end line and side lines only is desired. thank you :) or also glad for other ideas or api to determine the lines/corners I need. glad to email to discuss if that is better/easier actually prefer that. thanks.
3
0
496
Jan ’25
CoreML Conversion Display Issues
Hello! I have a TrackNet model that I have converted to CoreML (.mlpackage) using coremltools, and the conversion process appears to go smoothly as I get the .mlpackage file I am looking for with the weights and model.mlmodel file in the folder. However, when I drag it into Xcode, it just shows up as 4 script tags instead of the model "interface" that is typically expected. I initially was concerned that my model was not compatible with CoreML, but upon logging the conversions, everything seems to be converted properly. I have some code that may be relevant in debugging this issue: How I use the model: model = BallTrackerNet() # this is the model architecture which will be referenced later device = self.device # cpu model.load_state_dict(torch.load("models/balltrackerbest.pt", map_location=device)) # balltrackerbest is the weights model = model.to(device) model.eval() Here is the BallTrackerNet() model itself import torch.nn as nn import torch class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, pad=1, stride=1, bias=True): super().__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=bias), nn.ReLU(), nn.BatchNorm2d(out_channels) ) def forward(self, x): return self.block(x) class BallTrackerNet(nn.Module): def __init__(self, out_channels=256): super().__init__() self.out_channels = out_channels self.conv1 = ConvBlock(in_channels=9, out_channels=64) self.conv2 = ConvBlock(in_channels=64, out_channels=64) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = ConvBlock(in_channels=64, out_channels=128) self.conv4 = ConvBlock(in_channels=128, out_channels=128) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = ConvBlock(in_channels=128, out_channels=256) self.conv6 = ConvBlock(in_channels=256, out_channels=256) self.conv7 = ConvBlock(in_channels=256, out_channels=256) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv8 = ConvBlock(in_channels=256, out_channels=512) self.conv9 = ConvBlock(in_channels=512, out_channels=512) self.conv10 = ConvBlock(in_channels=512, out_channels=512) self.ups1 = nn.Upsample(scale_factor=2) self.conv11 = ConvBlock(in_channels=512, out_channels=256) self.conv12 = ConvBlock(in_channels=256, out_channels=256) self.conv13 = ConvBlock(in_channels=256, out_channels=256) self.ups2 = nn.Upsample(scale_factor=2) self.conv14 = ConvBlock(in_channels=256, out_channels=128) self.conv15 = ConvBlock(in_channels=128, out_channels=128) self.ups3 = nn.Upsample(scale_factor=2) self.conv16 = ConvBlock(in_channels=128, out_channels=64) self.conv17 = ConvBlock(in_channels=64, out_channels=64) self.conv18 = ConvBlock(in_channels=64, out_channels=self.out_channels) self.softmax = nn.Softmax(dim=1) self._init_weights() def forward(self, x, testing=False): batch_size = x.size(0) x = self.conv1(x) x = self.conv2(x) x = self.pool1(x) x = self.conv3(x) x = self.conv4(x) x = self.pool2(x) x = self.conv5(x) x = self.conv6(x) x = self.conv7(x) x = self.pool3(x) x = self.conv8(x) x = self.conv9(x) x = self.conv10(x) x = self.ups1(x) x = self.conv11(x) x = self.conv12(x) x = self.conv13(x) x = self.ups2(x) x = self.conv14(x) x = self.conv15(x) x = self.ups3(x) x = self.conv16(x) x = self.conv17(x) x = self.conv18(x) # x = self.softmax(x) out = x.reshape(batch_size, self.out_channels, -1) if testing: out = self.softmax(out) return out def _init_weights(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.uniform_(module.weight, -0.05, 0.05) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) I have been struggling with this conversion for almost 2 weeks now so any help, ideas or pointers would be greatly appreciated! Thanks! Michael
13
0
1.1k
Jan ’25
Can't apply compression techniques on my CoreML Object Detection model.
import coremltools as ct from coremltools.models.neural_network import quantization_utils # load full precision model model_fp32 = ct.models.MLModel(modelPath) model_fp16 = quantization_utils.quantize_weights(model_fp32, nbits=16) model_fp16.save("reduced-model.mlmodel") I'm testing it with the model from one of Apple's source codes(GameBoardDetector), and it works fine, reduces the model size by half. But there are several problems with my model(trained on CreateML app using Full Network): Quantizing to float 16 does not work(new file gets created with reduced only 0.1mb). Quantizing to below 16 values cause errors, and no file gets created. Here are additional metadata and precisions of models. Working model's additional metadata and precision: Mine's additional metadata and precision:
2
0
627
Jan ’25
Xcode AI Coding Assistance Option(s)
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development. I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects. Thanks in advance!
6
0
11k
Mar ’25
CoreML inference on iOS HW uses only CPU on CoreMLTools imported Pytorch model
I have exported a Pytorch model into a CoreML mlpackage file and imported the model file into my iOS project. The model is a Music Source Separation model - running prediction on audio-spectrogram blocks and returning separated audio source spectrograms. Model produces correct results vs. desktop+GPU+Python but the inference on iPhone 15 Pro Max is really, really slow. Using Xcode model Performance tool I can see that the inference isn't automatically managed between compute units - all of it runs on CPU. The Performance tool notation hints all that ops should be supported by both the GPU and Neural Engine. One thing to note, that when initializing the model with MLModelConfiguration option .cpuAndGPU or .cpuAndNeuralEngine there is an error in Xcode console: `Error(s) occurred compiling MIL to BNNS graph: [CreateBnnsGraphProgramFromMIL]: Failed to determine convolution kernel at location at /private/var/containers/Bundle/Application/2E3C4AFF-1FA4-4C95-AAE4-ECEBC0FB0BF9/mymss.app/mymss.mlmodelc/model.mil:2453:12 @ CreateBnnsGraphProgramFromMIL` Before going back hammering the model in Python, are there any tips/strategies I could try in CoreMLTools export phase or in configuring the model for prediction on iOS? My export toolchain is currently Linux with CoreMLTools v8.1, export target iOS16.
2
0
722
Feb ’25
Creating .mlmodel with Create ML Components
I have rewatched WWDC22 a few times , but still not getting full understanding how to get .mlmodel model file type from components . Example with banana ripeness is cool , but what need to be added to actually have output of .mlmodel , is somewhere full sample code for this type of modular project ? Code is from [https://developer.apple.com/videos/play/wwdc2022/10019) import CoreImage import CreateMLComponents struct ImageRegressor { static let trainingDataURL = URL(fileURLWithPath: "~/Desktop/bananas") static let parametersURL = URL(fileURLWithPath: "~/Desktop/parameters") static func train() async throws -> some Transformer<CIImage, Float> { let estimator = ImageFeaturePrint() .appending(LinearRegressor()) // File name example: banana-5.jpg let data = try AnnotatedFiles(labeledByNamesAt: trainingDataURL, separator: "-", index: 1, type: .image) .mapFeatures(ImageReader.read) .mapAnnotations({ Float($0)! }) let (training, validation) = data.randomSplit(by: 0.8) let transformer = try await estimator.fitted(to: training, validateOn: validation) try estimator.write(transformer, to: parametersURL) return transformer } } I have tried to run it in Mac OS command line type app, Swift-UI but most what I had as output was .pkg with "pipeline.json, parameters, optimizer.json, optimizer"
3
0
553
Mar ’25
Will Apple Intelligence Support Third-Party LLMs or Custom AI Agent Integrations?
Hi everyone, I’m an AI engineer working on autonomous AI agents and exploring ways to integrate them into the Apple ecosystem, especially via Siri and Apple Intelligence. I was impressed by Apple’s integration of ChatGPT and its privacy-first design, but I’m curious to know: • Are there plans to support third-party LLMs? • Could Siri or Apple Intelligence call external AI agents or allow extensions to plug in alternative models for reasoning, scheduling, or proactive suggestions? I’m particularly interested in building event-driven, voice-triggered workflows where Apple Intelligence could act as a front-end for more complex autonomous systems (possibly local or cloud-based). This kind of extensibility would open up incredible opportunities for personalized, privacy-friendly use cases — while aligning with Apple’s system architecture. Is anything like this on the roadmap? Or is there a suggested way to prototype such integrations today? Thanks in advance for any thoughts or pointers!
4
0
462
May ’25