Create intelligent features and enable new experiences for your apps by leveraging powerful on-device machine learning.

All subtopics
Posts under Machine Learning topic

Post

Replies

Boosts

Views

Activity

Create ML Trouble Loading CSV to Train Word Tagger With Commas in Training Data
I'm using Numbers to build a spreadsheet that I'm exporting as a CSV. I then import this file into Create ML to train a word tagger model. Everything has been working fine for all the models I've trained so far, but now I'm coming across a use case that has been breaking the import process: commas within the training data. This is a case that none of Apple's examples show. My project takes Navajo text that has been tokenized by syllables and labels the parts-of-speech. Case that works... Raw text: Naaltsoos yídéeshtah. Tokens column: Naal,tsoos, ,yí,déesh,tah,. Labels column: NObj,NObj,Space,Verb,Verb,VStem,Punct Case that breaks... Raw text: óola, béésh łigaii, tłʼoh naadą́ą́ʼ, wáin, akʼah, dóó á,shįįh Tokens column with tokenized text (commas quoted): óo,la,",", ,béésh, ,łi,gaii,",", ,tłʼoh, ,naa,dą́ą́ʼ,",", ,wáin,",", ,a,kʼah,",", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escaped): óo,la,\,, ,béésh, ,łi,gaii,\,, ,tłʼoh, ,naa,dą́ą́ʼ,\,, ,wáin,\,, ,a,kʼah,\,, ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escape-quoted): óo,la,\",\", ,béésh, ,łi,gaii,\",\", ,tłʼoh, ,naa,dą́ą́ʼ,\",\", ,wáin,\",\", ,a,kʼah,\",\", ,dóó, ,á,shįįh (record not detected by Create ML) Tokens column with tokenized text (commas escape-quoted): óo,la,"","", ,béésh, ,łi,gaii,"","", ,tłʼoh, ,naa,dą́ą́ʼ,"","", ,wáin,"","", ,a,kʼah,"","", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Labels column: NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Punct,Space,NSub,NSub,Punct,Space,Conj,Space,NSub,NSub Sample From Spreadsheet Solution Needed It's simple enough to escape commas within CSV files, but the format needed by Create ML essentially combines entire CSV records into single columns, so I'm ending up needing a CSV record that contains a mixture of commas to use for parsing and ones to use as character literals. That's where this gets complicated. For this particular use case (which seems like it would frequently arise when training a word tagger model), how should I properly escape a comma literal?
6
0
810
Jan ’25
Named Entity Recognition Model for Measurements
In an under-development MacOS & iOS app, I need to identify various measurements from OCR'ed text: length, weight, counts per inch, area, percentage. The unit type (e.g. UnitLength) needs to be identified as well as the measurement's unit (e.g. .inches) in order to convert the measurement to the app's internal standard (e.g. centimetres), the value of which is stored the relevant CoreData entity. The use of NLTagger and NLTokenizer is problematic because of the various representations of the measurements: e.g. "50g.", "50 g", "50 grams", "1 3/4 oz." Currently, I use a bespoke algorithm based on String contains and step-wise evaluation of characters, which is reasonably accurate but requires frequent updating as further representations are detected. I'm aware of the Python SpaCy model being capable of NER Measurement recognition, but am reluctant to incorporate a Python-based solution into a production app. (ref [https://developer.apple.com/forums/thread/30092]) My preference is for an open-source NER Measurement model that can be used as, or converted to, some form of a Swift compatible Machine Learning model. Does anyone know of such a model?
0
0
116
Mar ’25
Vision Framework VNTrackObjectRequest: Minimum Valid Bounding Box Size Causing Internal Error (Code=9)
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest. Occasionally (but not always), I receive the following runtime error: Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size} From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest. Could someone clarify: What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects? Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request? This information would be extremely helpful to reliably avoid this internal error. Thank you!
1
0
111
Apr ’25
Various On-Device Frameworks API & ChatGPT
Posting a follow up question after the WWDC 2025 Machine Learning AI & Frameworks Group Lab on June 12. In regards to the on-device API of any of the AI frameworks (foundation model, vision framework, ect.), is there a response condition or path where the API outsources it's input to ChatGPT if the user has allowed this like Siri does? Ignore this if it's a no: is this handled behind the scenes or by the developer?
0
0
257
Jun ’25
Data used for MLX fine-tuning
The WWDC25: Explore large language models on Apple silicon with MLX video talks about using your own data to fine-tune a large language model. But the video doesn't explain what kind of data can be used. The video just shows the command to use and how to point to the data folder. Can I use PDFs, Word documents, Markdown files to train the model? Are there any code examples on GitHub that demonstrate how to do this?
2
0
188
Oct ’25
LanguageModelSession always returns very lengthy responses
No matter what, the LanguageModelSession always returns very lengthy / verbose responses. I set the maximumResponseTokens option to various small numbers but it doesn't appear to have any effect. I've even used this instructions format to keep responses between 3-8 words but it returns multiple paragraphs. Is there a way to manage LLM response length? Thanks.
3
0
233
Sep ’25
Foundational Model - Image as Input? Timeline
Hi all, I am interested in unlocking unique applications with the new foundational models. I have a few questions regarding the availability of the following features: Image Input: The update in June 2025 mentions "image" 44 times (https://machinelearning.apple.com/research/apple-foundation-models-2025-updates) - however I can't seem to find any information about having images as the input/prompt for the foundational models. When will this be available? I understand that there are existing Vision ML APIs, but I want image input into a multimodal on-device LLM (VLM) instead for features like "Which player is holding the ball in the image", etc (image understanding) Cloud Foundational Model - when will this be available? Thanks! Clement :)
1
0
501
Sep ’25
Missing module 'coremltools.libmilstoragepython'
Hello! I'm following the Foundation Models adapter training guide (https://developer.apple.com/apple-intelligence/foundation-models-adapter/) on my NVIDIA DGX Spark box. I'm able to train on my own data but the example notebook fails when I try to export the artifact as an fmadapter. I get the following error for the code block I'm trying to run. I haven't touched any of the code in the export folder. I tried exporting it on my Mac too and got the same error as well (given below). Would appreciate some more clarity around this. Thank you. Code Block: from export.export_fmadapter import Metadata, export_fmadapter metadata = Metadata( author="3P developer", description="An adapter that writes play scripts.", ) export_fmadapter( output_dir="./", adapter_name="myPlaywritingAdapter", metadata=metadata, checkpoint="adapter-final.pt", draft_checkpoint="draft-model-final.pt", ) Error: --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) Cell In[10], line 1 ----> 1 from export.export_fmadapter import Metadata, export_fmadapter 3 metadata = Metadata( 4 author="3P developer", 5 description="An adapter that writes play scripts.", 6 ) 8 export_fmadapter( 9 output_dir="./", 10 adapter_name="myPlaywritingAdapter", (...) 13 draft_checkpoint="draft-model-final.pt", 14 ) File /workspace/export/export_fmadapter.py:11 8 from typing import Any 10 from .constants import BASE_SIGNATURE, MIL_PATH ---> 11 from .export_utils import AdapterConverter, AdapterSpec, DraftModelConverter, camelize 13 logger = logging.getLogger(__name__) 16 class MetadataKeys(enum.StrEnum): File /workspace/export/export_utils.py:15 13 import torch 14 import yaml ---> 15 from coremltools.libmilstoragepython import _BlobStorageWriter as BlobWriter 16 from coremltools.models.neural_network.quantization_utils import _get_kmeans_lookup_table_and_weight 17 from coremltools.optimize._utils import LutParams ModuleNotFoundError: No module named 'coremltools.libmilstoragepython'
4
0
510
Oct ’25
VNDetectFaceRectanglesRequest does not use the Neural Engine?
I'm on Tahoe 26.1 / M3 Macbook Air. I'm using VNDetectFaceRectanglesRequest as properly as possible, as in the minimal command line program attached below. For some reason, I always get: MLE5Engine is disabled through the configuration printed. I couldn't find any notes on developer docs saying that VNDetectFaceRectanglesRequest can not use the Apple Neural Engine. I'm assuming there is something wrong with my code however I wasn't able to find any remarks from documentation where it might be. I wasn't able to find the above error message online either. I would appreciate your help a lot and thank you in advance. The code below accesses the video from AVCaptureDevice.DeviceType.builtInWideAngleCamera. Currently it directly chooses the 0th format which has the largest resolution (Full HD on my M3 MBA) and "4:2:0" color "v" reduced color component spectrum encoding ("420v"). After accessing video, it performs a VNDetectFaceRectanglesRequest. It prints "VNDetectFaceRectanglesRequest completion Handler called" many times, then prints the error message above, then continues printing "VNDetectFaceRectanglesRequest completion Handler called" until the user quits it. To run it in Xcode, File > New project > Mac command line tool. Pasting the code below, then click on the root file > Targets > Signing & Capabilities > Hardened Runtime > Resource Access > Camera. A possible explanation could be that either Apple's internal CoreML code for this function works on GPU/CPU only or it doesn't accept 420v as supplied by the Macbook Air camera import AVKit import Vision var videoDataOutput: AVCaptureVideoDataOutput = AVCaptureVideoDataOutput() var detectionRequests: [VNDetectFaceRectanglesRequest]? var videoDataOutputQueue: DispatchQueue = DispatchQueue(label: "queue") class XYZ: /*NSViewController or NSObject*/NSObject, AVCaptureVideoDataOutputSampleBufferDelegate { func viewDidLoad() { //super.viewDidLoad() let session = AVCaptureSession() let inputDevice = try! self.configureFrontCamera(for: session) self.configureVideoDataOutput(for: inputDevice.device, resolution: inputDevice.resolution, captureSession: session) self.prepareVisionRequest() session.startRunning() } fileprivate func highestResolution420Format(for device: AVCaptureDevice) -> (format: AVCaptureDevice.Format, resolution: CGSize)? { let deviceFormat = device.formats[0] print(deviceFormat) let dims = CMVideoFormatDescriptionGetDimensions(deviceFormat.formatDescription) let resolution = CGSize(width: CGFloat(dims.width), height: CGFloat(dims.height)) return (deviceFormat, resolution) } fileprivate func configureFrontCamera(for captureSession: AVCaptureSession) throws -> (device: AVCaptureDevice, resolution: CGSize) { let deviceDiscoverySession = AVCaptureDevice.DiscoverySession(deviceTypes: [AVCaptureDevice.DeviceType.builtInWideAngleCamera], mediaType: .video, position: AVCaptureDevice.Position.unspecified) let device = deviceDiscoverySession.devices.first! let deviceInput = try! AVCaptureDeviceInput(device: device) captureSession.addInput(deviceInput) let highestResolution = self.highestResolution420Format(for: device)! try! device.lockForConfiguration() device.activeFormat = highestResolution.format device.unlockForConfiguration() return (device, highestResolution.resolution) } fileprivate func configureVideoDataOutput(for inputDevice: AVCaptureDevice, resolution: CGSize, captureSession: AVCaptureSession) { videoDataOutput.setSampleBufferDelegate(self, queue: videoDataOutputQueue) captureSession.addOutput(videoDataOutput) } fileprivate func prepareVisionRequest() { let faceDetectionRequest: VNDetectFaceRectanglesRequest = VNDetectFaceRectanglesRequest(completionHandler: { (request, error) in print("VNDetectFaceRectanglesRequest completion Handler called") }) // Start with detection detectionRequests = [faceDetectionRequest] } // MARK: AVCaptureVideoDataOutputSampleBufferDelegate // Handle delegate method callback on receiving a sample buffer. public func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) { var requestHandlerOptions: [VNImageOption: AnyObject] = [:] let cameraIntrinsicData = CMGetAttachment(sampleBuffer, key: kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix, attachmentModeOut: nil) if cameraIntrinsicData != nil { requestHandlerOptions[VNImageOption.cameraIntrinsics] = cameraIntrinsicData } let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)! // No tracking object detected, so perform initial detection let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, orientation: CGImagePropertyOrientation.up, options: requestHandlerOptions) try! imageRequestHandler.perform(detectionRequests!) } } let X = XYZ() X.viewDidLoad() sleep(9999999)
0
0
340
Nov ’25
jax-metal failing due to incompatibility with jax 0.5.1 or later.
Hello, I am interested in using jax-metal to train ML models using Apple Silicon. I understand this is experimental. After installing jax-metal according to https://developer.apple.com/metal/jax/, my python code fails with the following error JaxRuntimeError: UNKNOWN: -:0:0: error: unknown attribute code: 22 -:0:0: note: in bytecode version 6 produced by: StableHLO_v1.12.1 My issue is identical to the one reported here https://github.com/jax-ml/jax/issues/26968#issuecomment-2733120325, and is fixed by pinning to jax-metal 0.1.1., jax 0.5.0 and jaxlib 0.5.0. Thank you!
0
0
436
3w
Can iOS capture video at 4032×3024 while running a Vision/ML model?
I am new to Swift and iOS development, and I have a question about video capture performance. Is it possible to capture video at a resolution of 4032×3024 while simultaneously running a vision/ML model on the video stream (e.g., using Vision or CoreML)? I want to know: whether iOS devices support capturing video at that resolution, whether the frame rate drops significantly at that scale, and whether it is practical to run a Vision/ML model in real-time while recording at such a high resolution. If anyone has experience with high-resolution AVCaptureSession setups or combining them with real-time ML processing, I would really appreciate guidance or sample code.
1
0
125
2w
Pre-inference AI Safety Governor for FoundationModels (Swift, On-Device)
Hi everyone, I've been building an on-device AI safety layer called Newton Engine, designed to validate prompts before they reach FoundationModels (or any LLM). Wanted to share v1.3 and get feedback from the community. The Problem Current AI safety is post-training — baked into the model, probabilistic, not auditable. When Apple Intelligence ships with FoundationModels, developers will need a way to catch unsafe prompts before inference, with deterministic results they can log and explain. What Newton Does Newton validates every prompt pre-inference and returns: Phase (0/1/7/8/9) Shape classification Confidence score Full audit trace If validation fails, generation is blocked. If it passes (Phase 9), the prompt proceeds to the model. v1.3 Detection Categories (14 total) Jailbreak / prompt injection Corrosive self-negation ("I hate myself") Hedged corrosive ("Not saying I'm worthless, but...") Emotional dependency ("You're the only one who understands") Third-person manipulation ("If you refuse, you're proving nobody cares") Logical contradictions ("Prove truth doesn't exist") Self-referential paradox ("Prove that proof is impossible") Semantic inversion ("Explain how truth can be false") Definitional impossibility ("Square circle") Delegated agency ("Decide for me") Hallucination-risk prompts ("Cite the 2025 CDC report") Unbounded recursion ("Repeat forever") Conditional unbounded ("Until you can't") Nonsense / low semantic density Test Results 94.3% catch rate on 35 adversarial test cases (33/35 passed). Architecture User Input ↓ [ Newton ] → Validates prompt, assigns Phase ↓ Phase 9? → [ FoundationModels ] → Response Phase 1/7/8? → Blocked with explanation Key Properties Deterministic (same input → same output) Fully auditable (ValidationTrace on every prompt) On-device (no network required) Native Swift / SwiftUI String Catalog localization (EN/ES/FR) FoundationModels-ready (#if canImport) Code Sample — Validation let governor = NewtonGovernor() let result = governor.validate(prompt: userInput) if result.permitted { // Proceed to FoundationModels let session = LanguageModelSession() let response = try await session.respond(to: userInput) } else { // Handle block print("Blocked: Phase \(result.phase.rawValue) — \(result.reasoning)") print(result.trace.summary) // Full audit trace } Questions for the Community Anyone else building pre-inference validation for FoundationModels? Thoughts on the Phase system (0/1/7/8/9) vs. simple pass/fail? Interest in Shape Theory classification for prompt complexity? Best practices for integrating with LanguageModelSession? Links GitHub: https://github.com/jaredlewiswechs/ada-newton Technical overview: parcri.net Happy to share more implementation details. Looking for feedback, collaborators, and anyone else thinking about deterministic AI safety on-device.
0
0
295
1w
On-Device Intelligent Assistant (Works Offline with Foundation Models)
Hello, World I built a deterministic safety layer for FoundationModels called Newton. It validates prompts before inference — if validation fails, generation never happens. It catches jailbreaks, hallucination traps, corrosive frames, and logical contradictions with 94% accuracy on adversarial inputs. All on-device, native Swift, no dependencies. Newton also has a front-facing Intelligent Partner named Ada, and given the incredible integration with FoundationModels and various census data and shape files, this is all available PRIVATE AND OFFLINE. Running on iOS 26 beta today. Happy to demo. https://github.com/jaredlewiswechs/ada-newton — Jared Lewis parcri.net
1
0
72
5d
Apple's AI development language is not compatible
We are developing Apple AI for overseas markets and adapting it for iPhone 17 and later models. When the system language and Siri language do not match—such as the system being in English while Siri is in Chinese—it may result in Apple AI being unusable. So, I would like to ask, how can this issue be resolved, and are there other reasons that might cause it to be unusable within the app?
1
0
450
3d
Filtering Contours from Vision
Hello, I need help I desire to select/filter the contours on an image. Not sure best way to do that. Idea select/filter for bottom left most contour? see image attached please. also will need end points or court corners. and need contour to be fine line, smooth, ie accurate of the court end line and side lines only is desired. thank you :) or also glad for other ideas or api to determine the lines/corners I need. glad to email to discuss if that is better/easier actually prefer that. thanks.
3
0
496
Jan ’25
CoreML Conversion Display Issues
Hello! I have a TrackNet model that I have converted to CoreML (.mlpackage) using coremltools, and the conversion process appears to go smoothly as I get the .mlpackage file I am looking for with the weights and model.mlmodel file in the folder. However, when I drag it into Xcode, it just shows up as 4 script tags instead of the model "interface" that is typically expected. I initially was concerned that my model was not compatible with CoreML, but upon logging the conversions, everything seems to be converted properly. I have some code that may be relevant in debugging this issue: How I use the model: model = BallTrackerNet() # this is the model architecture which will be referenced later device = self.device # cpu model.load_state_dict(torch.load("models/balltrackerbest.pt", map_location=device)) # balltrackerbest is the weights model = model.to(device) model.eval() Here is the BallTrackerNet() model itself import torch.nn as nn import torch class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, pad=1, stride=1, bias=True): super().__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=bias), nn.ReLU(), nn.BatchNorm2d(out_channels) ) def forward(self, x): return self.block(x) class BallTrackerNet(nn.Module): def __init__(self, out_channels=256): super().__init__() self.out_channels = out_channels self.conv1 = ConvBlock(in_channels=9, out_channels=64) self.conv2 = ConvBlock(in_channels=64, out_channels=64) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = ConvBlock(in_channels=64, out_channels=128) self.conv4 = ConvBlock(in_channels=128, out_channels=128) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = ConvBlock(in_channels=128, out_channels=256) self.conv6 = ConvBlock(in_channels=256, out_channels=256) self.conv7 = ConvBlock(in_channels=256, out_channels=256) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv8 = ConvBlock(in_channels=256, out_channels=512) self.conv9 = ConvBlock(in_channels=512, out_channels=512) self.conv10 = ConvBlock(in_channels=512, out_channels=512) self.ups1 = nn.Upsample(scale_factor=2) self.conv11 = ConvBlock(in_channels=512, out_channels=256) self.conv12 = ConvBlock(in_channels=256, out_channels=256) self.conv13 = ConvBlock(in_channels=256, out_channels=256) self.ups2 = nn.Upsample(scale_factor=2) self.conv14 = ConvBlock(in_channels=256, out_channels=128) self.conv15 = ConvBlock(in_channels=128, out_channels=128) self.ups3 = nn.Upsample(scale_factor=2) self.conv16 = ConvBlock(in_channels=128, out_channels=64) self.conv17 = ConvBlock(in_channels=64, out_channels=64) self.conv18 = ConvBlock(in_channels=64, out_channels=self.out_channels) self.softmax = nn.Softmax(dim=1) self._init_weights() def forward(self, x, testing=False): batch_size = x.size(0) x = self.conv1(x) x = self.conv2(x) x = self.pool1(x) x = self.conv3(x) x = self.conv4(x) x = self.pool2(x) x = self.conv5(x) x = self.conv6(x) x = self.conv7(x) x = self.pool3(x) x = self.conv8(x) x = self.conv9(x) x = self.conv10(x) x = self.ups1(x) x = self.conv11(x) x = self.conv12(x) x = self.conv13(x) x = self.ups2(x) x = self.conv14(x) x = self.conv15(x) x = self.ups3(x) x = self.conv16(x) x = self.conv17(x) x = self.conv18(x) # x = self.softmax(x) out = x.reshape(batch_size, self.out_channels, -1) if testing: out = self.softmax(out) return out def _init_weights(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.uniform_(module.weight, -0.05, 0.05) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) I have been struggling with this conversion for almost 2 weeks now so any help, ideas or pointers would be greatly appreciated! Thanks! Michael
13
0
1.1k
Jan ’25
Can't apply compression techniques on my CoreML Object Detection model.
import coremltools as ct from coremltools.models.neural_network import quantization_utils # load full precision model model_fp32 = ct.models.MLModel(modelPath) model_fp16 = quantization_utils.quantize_weights(model_fp32, nbits=16) model_fp16.save("reduced-model.mlmodel") I'm testing it with the model from one of Apple's source codes(GameBoardDetector), and it works fine, reduces the model size by half. But there are several problems with my model(trained on CreateML app using Full Network): Quantizing to float 16 does not work(new file gets created with reduced only 0.1mb). Quantizing to below 16 values cause errors, and no file gets created. Here are additional metadata and precisions of models. Working model's additional metadata and precision: Mine's additional metadata and precision:
2
0
627
Jan ’25
Xcode AI Coding Assistance Option(s)
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development. I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects. Thanks in advance!
6
0
11k
Mar ’25
CoreML inference on iOS HW uses only CPU on CoreMLTools imported Pytorch model
I have exported a Pytorch model into a CoreML mlpackage file and imported the model file into my iOS project. The model is a Music Source Separation model - running prediction on audio-spectrogram blocks and returning separated audio source spectrograms. Model produces correct results vs. desktop+GPU+Python but the inference on iPhone 15 Pro Max is really, really slow. Using Xcode model Performance tool I can see that the inference isn't automatically managed between compute units - all of it runs on CPU. The Performance tool notation hints all that ops should be supported by both the GPU and Neural Engine. One thing to note, that when initializing the model with MLModelConfiguration option .cpuAndGPU or .cpuAndNeuralEngine there is an error in Xcode console: `Error(s) occurred compiling MIL to BNNS graph: [CreateBnnsGraphProgramFromMIL]: Failed to determine convolution kernel at location at /private/var/containers/Bundle/Application/2E3C4AFF-1FA4-4C95-AAE4-ECEBC0FB0BF9/mymss.app/mymss.mlmodelc/model.mil:2453:12 @ CreateBnnsGraphProgramFromMIL` Before going back hammering the model in Python, are there any tips/strategies I could try in CoreMLTools export phase or in configuring the model for prediction on iOS? My export toolchain is currently Linux with CoreMLTools v8.1, export target iOS16.
2
0
722
Feb ’25