Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Inquiry About GS1 DataBar Stacked Support in Vision Framework
Hello, I am currently developing an application that requires barcode scanning using Apple’s Vision framework (VNBarcodeSymbology). I noticed that the framework supports several GS1 DataBar symbologies, such as: VNBarcodeSymbology.gs1DataBar VNBarcodeSymbology.gs1DataBarExpanded VNBarcodeSymbology.gs1DataBarLimited However, I could not find any explicit reference to support for GS1 DataBar Stacked (both regular and expanded variants). Could you confirm whether GS1 DataBar Stacked is currently supported in VisionKit's DataScannerViewController or VNBarcodeObservation? If not, are there any plans to include support for this symbology in a future iOS update? This functionality is critical for my use case, as GS1 DataBar Stacked barcodes are widely used in retail, pharmaceuticals, and logistics, where space constraints prevent the use of standard GS1 DataBar formats. I appreciate any clarification on this matter and would be happy to provide additional details if needed.
0
0
386
Feb ’25
My app crash in the Portrait private framework
Incident Identifier: 4C22F586-71FB-4644-B823-A4B52D158057 CrashReporter Key: adc89b7506c09c2a6b3a9099cc85531bdaba9156 Hardware Model: Mac16,10 Process: PRISMLensCore [16561] Path: /Applications/PRISMLens.app/Contents/Resources/app.asar.unpacked/node_modules/core-node/PRISMLensCore.app/PRISMLensCore Identifier: com.prismlive.camstudio Version: (null) ((null)) Code Type: ARM-64 Parent Process: ? [16560] Date/Time: (null) OS Version: macOS 15.4 (24E5228e) Report Version: 104 Exception Type: EXC_CRASH (SIGABRT) Exception Codes: 0x00000000 at 0x0000000000000000 Crashed Thread: 34 Application Specific Information: *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** -[__NSArrayM insertObject:atIndex:]: object cannot be nil' Thread 34 Crashed: 0 CoreFoundation 0x000000018ba4dde4 0x18b960000 + 974308 (__exceptionPreprocess + 164) 1 libobjc.A.dylib 0x000000018b512b60 0x18b4f8000 + 109408 (objc_exception_throw + 88) 2 CoreFoundation 0x000000018b97e69c 0x18b960000 + 124572 (-[__NSArrayM insertObject:atIndex:] + 1276) 3 Portrait 0x0000000257e16a94 0x257da3000 + 473748 (-[PTMSRResize addAdditionalOutput:] + 604) 4 Portrait 0x0000000257de91c0 0x257da3000 + 287168 (-[PTEffectRenderer initWithDescriptor:metalContext:useHighResNetwork:faceAttributesNetwork:humanDetections:prevTemporalState:asyncInitQueue:sharedResources:] + 6204) 5 Portrait 0x0000000257dab21c 0x257da3000 + 33308 (__33-[PTEffect updateEffectDelegate:]_block_invoke.241 + 164) 6 libdispatch.dylib 0x000000018b739b2c 0x18b738000 + 6956 (_dispatch_call_block_and_release + 32) 7 libdispatch.dylib 0x000000018b75385c 0x18b738000 + 112732 (_dispatch_client_callout + 16) 8 libdispatch.dylib 0x000000018b742350 0x18b738000 + 41808 (_dispatch_lane_serial_drain + 740) 9 libdispatch.dylib 0x000000018b742e2c 0x18b738000 + 44588 (_dispatch_lane_invoke + 388) 10 libdispatch.dylib 0x000000018b74d264 0x18b738000 + 86628 (_dispatch_root_queue_drain_deferred_wlh + 292) 11 libdispatch.dylib 0x000000018b74cae8 0x18b738000 + 84712 (_dispatch_workloop_worker_thread + 540) 12 libsystem_pthread.dylib 0x000000018b8ede64 0x18b8eb000 + 11876 (_pthread_wqthread + 292) 13 libsystem_pthread.dylib 0x000000018b8ecb74 0x18b8eb000 + 7028 (start_wqthread + 8)
1
0
68
Mar ’25
MLModel crashes when it is released on some iOS systems
We use MLModel in our app, which uses two file formats: mlmodel and mlpackage. We find that when the model is released, models using mlmodel format have a certain probability of crashing. And these crashes account for the majority (over 85%) in the iOS 16.x system. Here is the crash stack: Exception Type: SIGTRAP Exception Codes: TRAP_BRKPT at 0x1b48e855c Crashed Thread: 5 Thread 5 Crashed: 0 libdispatch.dylib 0x00000001b48e855c _dispatch_semaphore_dispose.cold.1 + 40 1 libdispatch.dylib 0x00000001b48b2b28 _dispatch_semaphore_signal_slow 2 libdispatch.dylib 0x00000001b48b0e58 _dispatch_dispose + 208 3 AppleNeuralEngine 0x00000001ef07b51c -[_ANEProgramForEvaluation .cxx_destruct] + 32 4 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116 5 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80 6 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80 7 AppleNeuralEngine 0x00000001ef079e04 -[_ANEProgramForEvaluation dealloc] + 72 8 AppleNeuralEngine 0x00000001ef07ca70 -[_ANEModel .cxx_destruct] + 44 9 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116 10 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80 11 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80 12 AppleNeuralEngine 0x00000001ef07bd7c -[_ANEModel dealloc] + 136 13 CoreFoundation 0x00000001ad4563cc cow_cleanup + 168 14 CoreFoundation 0x00000001ad49044c -[__NSDictionaryM dealloc] + 148 15 Espresso 0x00000001bb19c7a4 Espresso::ANERuntimeEngine::compiler::reset() + 1340 16 Espresso 0x00000001bb19cac8 Espresso::ANERuntimeEngine::compiler::~compiler() + 108 17 Espresso 0x00000001bacd69e4 std::__1::__shared_weak_count::__release_shared() + 84 18 Espresso 0x00000001ba944d00 std::__1::__hash_table<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::__unordered_map_hasher<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::hash<Espresso::platform>, std::__1::equal_to<Espresso::platform>, true>, std::__1::__unordered_map_equal<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::equal_to<Espresso::platform>, std::__1::hash<Espresso::platform>, true>, std::__1::allocator<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>>>::__deallocate_node(std::__1::__hash_node_base<std::__1::__hash_node<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, void*>*>*) + 40 19 Espresso 0x00000001ba8ea640 std::__1::__hash_table<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::__unordered_map_hasher<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::hash<Espresso::platform>, std::__1::equal_to<Espresso::platform>, true>, std::__1::__unordered_map_equal<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::equal_to<Espresso::platform>, std::__1::hash<Espresso::platform>, true>, std::__1::allocator<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>>>::~__hash_table() + 28 20 Espresso 0x00000001ba8e5750 Espresso::net::~net() + 396 21 Espresso 0x00000001bacd69e4 std::__1::__shared_weak_count::__release_shared() + 84 22 Espresso 0x00000001bad750e4 std::__1::__vector_base<std::__1::shared_ptr<Espresso::net>, std::__1::allocator<std::__1::shared_ptr<Espresso::net>>>::clear() + 52 23 Espresso 0x00000001ba902448 std::__1::__vector_base<std::__1::shared_ptr<Espresso::net>, std::__1::allocator<std::__1::shared_ptr<Espresso::net>>>::~__vector_base() + 36 24 Espresso 0x00000001ba8ed99c std::__1::unique_ptr<EspressoLight::espresso_plan::priv_t, std::__1::default_delete<EspressoLight::espresso_plan::priv_t>>::reset(EspressoLight::espresso_plan::priv_t*) + 188 25 Espresso 0x00000001ba95b7fc EspressoLight::espresso_plan::~espresso_plan() + 72 26 Espresso 0x00000001ba902078 EspressoLight::espresso_plan::~espresso_plan() + 16 27 Espresso 0x00000001ba8e690c espresso_plan_destroy + 372 28 CoreML 0x00000001c48c45cc -[MLNeuralNetworkEngine _deallocContextAndPlan] + 40 29 CoreML 0x00000001c48c43bc -[MLNeuralNetworkEngine dealloc] + 40 30 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116 31 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80 32 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80 ~~~~ Our code that release the MLModel object ~~~~ Moreover, we use a synchronization mechanism to ensure that the release of the MLModel and the data processing of the model (by calling [model predictionFromFeatures]) do not occur simultaneously. What could be the possible causes of the problem, and how can we prevent it from happening? Any advice would be appreciated.
1
0
591
Dec ’24
linear_quantize_activations taking 90 minutes + on MacBook Air M1 2020
In my quantization code, the line: compressed_model_a8 = cto.coreml.experimental.linear_quantize_activations( model, activation_config, [{'img':np.random.randn(1,13,1024,1024)}] ) has taken 90 minutes to run so far and is still not completed. From debugging, I can see that the line it's stuck on is line 261 in _model_debugger.py: model = ct.models.MLModel( cloned_spec, weights_dir=self.weights_dir, compute_units=compute_units, skip_model_load=False, # Don't skip model load as we need model prediction to get activations range. ) Is this expected behaviour? Would it be quicker to run on another computer with more RAM?
1
0
67
Mar ’25
Loading multifunction models on iOS causes a crash
I used the multifunction models feature introduced in iOS 18 to merge three VAE Encoder models with different resolutions into a single model. However, loading this merged model on iOS causes a crash with the error EXC_BAD_ACCESS (code=1, address=0x0). In contrast, merging VAE Decoder models using the same method does not result in crashes. Additionally, merging only two VAE Decoder models with different resolutions also leads to a crash when loaded on iOS. As for the Stable Diffusion Unet model, merging two or even three models does not cause any crashes, and it successfully generates images as expected. I use the following code to load the model: let config = MLModelConfiguration() config.computeUnits = .cpuAndNeuralEngine config.functionName = "test" try MLModel(contentsOf: url, configuration: config)
4
0
675
Dec ’24
Best practices for designing proactive FinTech insights with App Intents & Shortcuts?
Hello fellow developers, I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot. We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full." My question for the community is about the architectural and user experience best practices for this. How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user? What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance? Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations? We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge. Thanks for your insights!
0
0
151
4w
ImagePlayground: Programmatic Creation Error
Hardware: Macbook Pro M4 Nov 2024 Software: macOS Tahoe 26.0 & xcode 26.0 Apple Intelligence is activated and the Image playground macOS app works Running the following on xcode throws ImagePlayground.ImageCreator.Error.creationFailed Any suggestions on how to make this work? import Foundation import ImagePlayground Task { let creator = try await ImageCreator() guard let style = creator.availableStyles.first else { print("No styles available") exit(1) } let images = creator.images( for: [.text("A cat wearing mittens.")], style: style, limit: 1) for try await image in images { print("Generated image: \(image)") } exit(0) } RunLoop.main.run()
0
0
250
Sep ’25
Foundation Models framework dyld symbol errors after macOS 26 Beta 2 - LanguageModelSession constructor missing
Foundation Models framework worked perfectly on macOS 26 Beta 2, but starting from Beta 3 and continuing through Beta 6 (latest), I get dyld symbol errors even with the exact code from Apple's documentation. Environment: macOS 26.0 Beta 6 (25A5351b) Xcode 26 Beta 6 M4 Max MacBook Pro Apple Intelligence enabled and downloaded Error Details: dyld[Process]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC Referenced from: /path/to/app.debug.dylib Expected in: /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels Code Used (Exact from Documentation): import FoundationModels // This worked on Beta 2, crashes on Beta 3+ let model = SystemLanguageModel.default let session = LanguageModelSession(model: model) let response = try await session.respond(to: "Hello") What I've Verified: FoundationModels.framework exists in /System/Library/Frameworks/ Framework is properly linked in Xcode project Apple Intelligence is enabled and working Same code works in older beta versions Issue persists even with completely fresh Xcode projects Analysis: The dyld error suggests the LanguageModelSession(model:) constructor is missing. The symbol shows it's looking for a constructor with parameters (model:guardrails:tools:instructions:), but the documentation still shows the simple (model:) constructor. Questions: Has the LanguageModelSession API changed since Beta 2? Should we now use the constructor with guardrails/tools/instructions parameters? Is this a known issue with recent betas? Are there updated code samples for the current API? Additional Context: This affects both basic SystemLanguageModel usage AND custom adapter loading. The same dyld symbol errors occur when trying to create SystemLanguageModel(adapter: adapter) as well. Any guidance on the correct API usage for current betas would be greatly appreciated. The documentation appears to be out of sync with the actual framework implementation.
1
0
628
Sep ’25
A specific mlmodelc model runs on iPhone 15, but not on iPhone 16
As we described on the title, the model that I have built completely works on iPhone 15 / A16 Bionic, on the other hand it does not run on iPhone 16 / A18 chip with the following error message. E5RT encountered an STL exception. msg = MILCompilerForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED. E5RT: MILCompilerForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED (11) It consumes 1.5 ~ 1.6 GB RAM on the loading the model, then the consumption is decreased to less than 100MB on the both of iPhone 15 and 16. After that, only on iPhone 16, the above error is shown on the Xcode log, the memory consumption is surged to 5 to 6GB, and the system kills the app. It works well only on iPhone 15. This model is built with the Core ML tools. Until now, I have tried the target iOS 16 to 18 and the compute units of CPU_AND_NE and ALL. But any ways have not solved this issue. Eventually, what kindof fix should I do? minimum_deployment_target = ct.target.iOS18 compute_units = ct.ComputeUnit.ALL compute_precision = ct.precision.FLOAT16
2
0
136
May ’25
Vision Framework VNTrackObjectRequest: Minimum Valid Bounding Box Size Causing Internal Error (Code=9)
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest. Occasionally (but not always), I receive the following runtime error: Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size} From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest. Could someone clarify: What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects? Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request? This information would be extremely helpful to reliably avoid this internal error. Thank you!
0
0
89
Apr ’25
Where are Huggingface Models, downloaded by Swift MLX apps cached
I'm downloading a fine-tuned model from HuggingFace which is then cached on my Mac when the app first starts. However, I wanted to test adding a progress bar to show the download progress. To test this I need to delete the cached model. From what I've seen online this is cached at /Users/userName/.cache/huggingface/hub However, if I delete the files from here, using Terminal, the app still seems to be able to access the model. Is the model cached somewhere else? On my iPhone it seems deleting the app also deletes the cached model (app data) so that is useful.
0
0
365
4d
Downloading my fine tuned model from huggingface
I have used mlx_lm.lora to fine tune a mistral-7b-v0.3-4bit model with my data. I fused the mistral model with my adapters and upload the fused model to my directory on huggingface. I was able to use mlx_lm.generate to use the fused model in Terminal. However, I don't know how to load the model in Swift. I've used Imports import SwiftUI import MLX import MLXLMCommon import MLXLLM let modelFactory = LLMModelFactory.shared let configuration = ModelConfiguration( id: "pharmpk/pk-mistral-7b-v0.3-4bit" ) // Load the model off the main actor, then assign on the main actor let loaded = try await modelFactory.loadContainer(configuration: configuration) { progress in print("Downloading progress: \(progress.fractionCompleted * 100)%") } await MainActor.run { self.model = loaded } I'm getting an error runModel error: downloadError("A server with the specified hostname could not be found.") Any suggestions? Thanks, David PS, I can load the model from the app bundle // directory: Bundle.main.resourceURL! but it's too big to upload for Testflight
1
0
480
4d
Core ML Stable Diffusion
Attempting to set up ComfyUI-CoreMLSuite on my Mac Studio. ComfyUI starts but no Core nodes are in the add-node-list. cloned both ComfyUI-CoreMLSuite and ml-stable-diffusion into custom_nodes and bounced the ComfyUI server. The startup complains that ml-stable-diffusion has no init.py. FileNotFoundError: [Errno 2] No such file or directory: ... /ComfyUI/custom_nodes/ml-stable-diffusion/init.py' It appears to be a show stopper. What to do?
0
0
647
Nov ’24
Xcode 26.1 RC ( RC1 ?) Apple Intelligence using GPT (with account or without) or Sonnet (via OpenRouter) much slower
I didn't run benchmarks before update, but it seems at least 5x slower. Of course all the LLM work is on remote servers, so is non-intuitive to me this should be happening. Had updated MacOS and Xcode to 26.1RC at the same time, so can't even say I think it is MacOS or I think it is Xcode. Before the update the progress indicator for each piece of code might seem to get stuck at the very end (and toggling between Navigators and Coding Assistant) in Xcode UI seemed to refresh the UI and confirm coding complete... but now it seems progress races to 50%, then often is stuck at 75%... well earlier than used to get stuck. And it like something is legitimately processing not just a UI glitch. I'm wondering if this is somehow tied to visual rendering of the code in the little white window? CMD-TAB into Xcode seems laggy. Xcode is pinning a CPU. Why, this is all remote LLM work? MacBook Pro 2021 M1 64GB RAM. Went from 26.01 to 26.1RC. Didn't touch any of the betas until RC1.
1
0
155
5d
How to implement a CoreML model into an iOS app properly?
I am working on a lung cancer scanning app in for iOS with a CoreML model and when I test my app on a physical device, the model results in the same prediction 100% of the time. I even changed the names around and still resulted in the same case. I have listed my labels in cases and when its just stuck on the same case (case 1) My code is below: https://github.com/ShivenKhurana1/Detect-to-Protect-App/blob/main/DetectToProtect/SecondView.swift I couldn't add the code as it was too long so I hope github link is fine!
1
0
119
Mar ’25